MMFTN20

N-Channel Enhancement Vertical D-MOS Transistor

Features

- High-speed switching
- No secondary breakdown

Applications

- Thin and thick film circuits
- General purpose fast switching applications

1. Gate 2. Source 3. Drain
SOT-23 Plastic Package

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V_{DS}	50	V
Gate-Source Voltage (open drain)	$\mathrm{V}_{\mathrm{Gso}}$	± 20	V
Drain Current	I_{D}	100	mA
Peak Drain Current	I_{DM}	300	mA
Total Power Dissipation	$\mathrm{P}_{\text {tot }}{ }^{1)}$	300	mW
	$\mathrm{P}_{\text {tot }}{ }^{2)}$	250	mW
Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{s}	$-65 \mathrm{to}+150$	${ }^{\circ} \mathrm{C}$

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance from Juntion to Ambient	$\mathrm{R}_{\text {өJA }}$	$430{ }^{1)}$	K / W
	$\mathrm{R}_{\text {өJA }}$	$500^{2)}$	K / W

${ }^{1)}$ Device mounted on a ceramic substrate $10 \times 8 \times 0.7 \mathrm{~mm}$.
${ }^{2)}$ Device mounted on a printed-circuit board.

MMFTN20

Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Min.	Max.	Unit
Drain-Source Breakdown Voltage at $I_{D}=10 \mu \mathrm{~A}$	$V_{(B R) D S S}$	50	-	V
Drain-Source Leakage Current at $\mathrm{V}_{\mathrm{DS}}=40 \mathrm{~V}$	$\mathrm{l}_{\text {DSS }}$	-	1	$\mu \mathrm{A}$
Gate-Source Leakage Current at $\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$	$\mathrm{I}_{\text {GSS }}$	-	± 100	nA
Gate-Source Threshold Voltage at $V_{D S}=V_{G S}, I_{D}=1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	0.4	1.8	V
$\begin{aligned} & \text { Drain-Source On-State Resistance } \\ & \text { at } \mathrm{V}_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{G S}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA} \\ & \text { at } \mathrm{V}_{G S}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{R}_{\text {DS(on) }}$	-	$\begin{aligned} & 15 \\ & 20 \\ & 30 \end{aligned}$	Ω
Forward Transfer Admittance at $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$	$\left\|y_{f s}\right\|$	40	-	mS
Input Capacitance at $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {iss }}$	-	15	pF
Output Capacitance at $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {oss }}$	-	15	pF
Reverse Transfer Capacitance at $\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {rss }}$	-	5	pF
$\begin{aligned} & \text { Turn-On Time } \\ & \text { at } \mathrm{V}_{\mathrm{GS}}=0 \text { to } 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA} \end{aligned}$	$\mathrm{t}_{\text {(on) }}$	-	5	ns
Turn-Off Time at $\mathrm{V}_{G S}=10$ to $0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}$	$t_{\text {(off) }}$	-	10	ns

